ADDITION REACTIONS OF $\underline{\alpha}$ -DIMETHYLAMINONITRILES WITH ACRYLONITRILE: A SIMPLE SYNTHESIS OF γ -KETONITRILES

Vichai REUTRAKUL, Surachai NIMGIRAWATH*, Sirichai PANICHANUN and Piniti RATANANUKUL

Department of Chemistry, Faculty of Science, Mahidol University Rama VI Road, Bangkok 4, Thailand

*Department of Chemistry, Faculty of Science, Silapakorn University
Nakorn Pathom, Thailand

The reaction of the anion derived from $\underline{\alpha}$ -dialkylaminonitriles with acrylonitrile, followed by hydrolysis with aqueous acids or cupric sulfate in 95% ethanol gave $\underline{\gamma}$ -ketonitriles in good yields. This procedure is highly convenient for the synthesis of various $\underline{\gamma}$ -ketonitriles.

A recent report by Büchi <u>et.al.</u> on the chemistry of $\underline{\alpha}$ -dialkylaminonitriles prompts us to communicate our findings. Our results represent a simple and convenient synthesis of $\underline{\gamma}$ -ketonitriles from the corresponding aldehydes as shown in equation (1). The sequence of reactions, starting from $\underline{\alpha}$ -dimethylaminonitriles $\underline{2}$ to give the $\underline{\gamma}$ -ketonitriles $\underline{4}$, can be effected in one-pot (in the case of acid hydrolysis).

The following procedure is representative: 2-(p-chloropheny1)-2-dimethylaminoaceto-nitrile³ (0.025 mol) was added, under nitrogen, to a suspension of sodium methoxide (0.025 mol) in dry 1,2-dimethoxyethane (DME, 75 ml). The solution was then stirred at room temperature (RT) for 15 min. A solution of acrylonitrile (3 ml) in DME (10 ml) was slowly added and the whole mixture was stirred for additional 2 hr. The reaction mixture was hydrolyzed with hydrochloric acid (75 ml, 2N) for 2 hr at RT. The product was isolated with chloroform and further purified by recrystallization from 1:1 benzene-hexane to give 4-(p-chlorophenyl)-4-oxobutyronitrile in 75% yield. The results are summarized in Table 1.

An alternative hydrolytic procedure for the adduct $\underline{3}$ was also investigated. Preliminary experiments $\underline{4}$ employing $\underline{\alpha}$ -dimethylaminonitriles $\underline{2}$ and cupric sulfate, cupric acetate, or ferrous sulfate in 95% ethanol indicated that the cupric sulfate gave the best yields of the corresponding aldehydes. For this reason, cupric sulfate was used in the subsequent hydrolysis of $\underline{3}$. It was found that a cleaner product $\underline{4}$ could be obtained if the crude $\underline{3}$ was isolated prior to the hydrolysis.

Tal	ь٦	e	1
ı u	~ .	_	-

<u>1</u>	4, Yields % ^a (Mp. ^o C) ^b (Method) ^c		
CHO CHO	71 (71-72) (1)		
	78 (71-72) (2)		
CH0	75 (72-73) (1)		
CI	74 (72-73) (2)		
CH ₃ 0 ✓ CH0	70 (112-113) (1)		
сн ₃ 0	70 (112-113) (2)		
,0 CHO	71 (92-93) (1)		
	70 (92-93) (2)		
	72 (77-78) (3)		
СНО	70 (77–78) (2)		

^aYields refer to overall yields from $\underline{2}$. ^bProducts were purified on recrystallization from 1:1 benzene-hexane. ^CMethod of hydrolysis 1, 2N HC1/2hr/RT; 2, CuS0₄.5 H₂0/95% CH₃CH₂OH/reflux, 15 min; 3, 50% CH₃CO₂H/24 hr/RT.

REFERENCES AND NOTES

- 1. G. Büchi, P.H. Liang, and H. Wüest, Tetrahedron Lett., 2763 (1978) and references therein.
- M. Bogavac, H. Lapin, V. Arsenijervic, and A. Horeau, Bull.Soc.Chim.Fr., 4437 (1969);
 H.C. Ho, T.L. Ho, and C.M. Wong, Can.J.Chem., <u>50</u>, 2718 (1972); W. Steglich and P. Gruber,
 Angew.Chem.Int.Ed., <u>10</u>, 655 (1971); H. Stetter, Angew.Chem.Int.Ed., <u>15</u>, 639 (1976);
 H. Stetter and H. Kuhlmann, Tetrahedron, <u>33</u>, 353 (1977).
- 3. All $\underline{\alpha}$ -dimethylaminonitriles were prepared from the corresponding aldehydes according to S.F. Dyke, E.P. Tiley, A.W.C. White, and D.P. Gale, Tetrahedron, $\underline{31}$, 1219 (1975).
- 4. Hydrolysis of parent $\underline{\alpha}$ -dimethylaminonitriles in 95% ethanol to the corresponding aldehydes investigated were:

<u>2</u> cn	Reagents	<u>1</u> ,Yields %
ÇH Î	CuSO ₄ .5 H ₂ O	75
[] N-CH3	Cu(OAc) ₂ .H ₂ 0	53
c1 CH ₃	FeS0 ₄ .7 H ₂ 0	56
CN	CuSO ₄ .5 H ₂ O	76
с ₅ н ₁₁ -сн	Cu(OAc) ₂ .H ₂ 0	52
N-CH ₃	FeS0 ₄ .5 H ₂ 0	66

(Received November 27, 1978)